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1. Introduction

Recent progress in both the linear and nonlinear aspects of stability theory has highlighted

the importance of receptivity problem [1]. One of tile most unclear part of receptivity

studies is the receptivity of boundary-layer flow to vortical disturbances. Some experimen-

tal [2] and theoretical [3] results permits to propose that quasi-steady outer-flow vortical

disturbances may trigger by-pass transition. For this reason the experimental and theo-

retical study of vortex-boundary layer interaction is an actual task. In present work such

interaction is investigated for the vorticity normal to the leading edge. The interest to this

type of vortical disturbances arises from the theoretical work [4], where it was shown that

small sinusoidal variation of upstream velocity along the spanwise direction can produce

significant variations in the boundary-layer profile.

In experimental part of this work such non-uniform flow was created and laminar-

turbulent transition in this flow was investigated. The non-uniform flow was produced

by laminar or turbulent wake behind the wire placed normal to the plate upstream the

leading edge. Theoretical part of the work is devoted to studying the unstable disturbance

evolution in a boundary layer with strongly non-uniform velocity profile similar to that

produced by outer-flow vorticity.

2. Experimental study of wake-boundary layer interaction

2.1. Experimental setup and equipment

The experiment was carried out in a low-turbulence direct-flow wind tunnel T-36I (se('

Figure 1) of Central Aerohydrodynamic Institute (TsAGI). The test section is 2610 mm

long, 500 mm wide and 350 mm high. The left and right walls were adjusted to compensate

for boundary-layer growth and to obtain a zero streamwise pressure gradient. A variable-

speed motor and a motor controller drives an axial flow fan. The free-stream velocity was

monitored using a Pitot tube. The wind tunnel was designed for velocity range of 15+65

re�s, but fan supply the lower velocities from 2 rrz/s. Tile input nozzle has exit to throat

area ratio 11.62. Before tile nozzle a set of 4 deturbulence nets were placed. All nets were

made from 0.12 rnm wires and have square mesh 0.3 x 0.3 rnnz.

Laminar-turbulent transition was studied in the boundary layer at horizontally mounted

flat plate of 1810 mm long, 500 mrn wide and 15 mm thick. The plate was made of l)lex -

iglass and has semi-elliptical nose with 18:1 axis ratio. The high from bottom wall to

plate was 125 turn, the distance from beginning of test section to leading edge was 710

turn. To produce the local flow inhomogeneity the metal wire of 0.1, 0.8 or 1.6 mnz was

stretched vertically in special support at different distances before leading edge of plate.
The streamwise velocity component was measured with a DISA 55M01 anemometer

and a single hot wire probe Dantec 55P01 or 55P15 made of gold plated tungsten with a

wire diameter 5 #rrz and a sensitive length of 1 rnm. Signals from hot-wire anemometers

were filtered to reduce noise level, digitized by 12-bit A/D converter (National Instruments

AT-MIO-64-E-3) and processed on a computer. The low-pass filter cutoif frequency was

1 kttz at 36 dB/octave. The high-pass filter cutoff frequency was 5 Itz at 36 dB/octave.

Mean flow velocity was measured without filters. The sampling frequency was 5 kltz .

Realization of 100 s long was used for spectrum calculation and 20 s long realizations



wereusedfor n'manvelocity and pulsations determining.

2.2. Undisturbed flow characteristics

For the wake-boundarylayer interaction study the wind tunnel wasre-adjustedto ot)tain
low turbulent flow at small speedsof 5+10 m/s. Detailed measurementsof mean velocity
field and pulsations at thesespeedswere made. The mean velocity field iuholnogeneity
in the test sectionwas found to be about 0.5 % of uo_. Characteristics of pulsations are

given in table 1. Despite of all attempts to diminish the turbulence level, tile integral

pulsations at the small speeds remain high enough, tIowever, the most part of pulsation

energy is accounted for the extremely low-frequency pulsations. This fact is illustrated by

spectrum of velocity pulsation for speed 5 m/s shown in Figure 2. If signal was filtered by

high-pass filter with cut of point at 5 Hz, the pulsation level becomes an order low (see

table 1). Frequencies less then 5 ltz correspond to characteristic sizes greater then 1 m.

l{eally, the pulsations of these frequencies are caused by temporal drift of velocity in the

wind tunnel and have no relation to turbulence. So, the filtered pulsations will be used

further as the characteristic of turbulence level.

2.3. Flow in the wake behind the wire

Laminar and turbulent wakes with different velocity deficits and width were created and

mean velocity profile and pulsations in the wakes were measured. Flow configuration and

coordinate system used in this case is shown in Figure 3a. In order to increase tire accuracy

of mean velocity profile measurement in low-deficit wake, the measurements were made

by two probes. The first probe was placed irrto the wake, the second probe was placed into

free stream. The difference between the velocities measured by these probes was velocity

deficit in tire wake. Usage of two probes eliminates the errors caused by velocity drift and

variations of temperature. The accuracy of mean velocity measurements by two-probe

method is about 0.3 %, whereas if only one probe is used the error increases to 0.8 %.

The laminar wake was produced by 0.1 mm wire placed in tlow with speed 5 m/s. The

Reynolds number corresponding to flow over wire was RD = uooD/v = 34.5, which is less

then critical value R, ,-, 40 for steady flow over cylinder. Mean velocity profiles measured

at distances x/D = 100, 360, 1060 from the wire are shown at Figure 4. Theoretical

expression for the velocity profile in laminar wake is

C- In 2rl 2 U -- ?Zoo Z
= ' ' (2J)

Uo

where velocity deficit u0 and half-thickness of the wake L are given by

_:A ' uoo---B , A=2V_--D-D, /3=-_-- v (2.2)

Velocity profiles plotted in similarity coordinates g , r/ in Figure 5a collapse quite

neatly onto a curve described by (2.1). The graphs of L/D and g as functions of _Tf/l)

and v/-D/z are shown in figure 5 b and c respectively. They are linear in accordance with

(2.2). Slope coefficient A = 0.28 found from Figure 5b well coincides with theoretical
value A = 0.28"l.



Unfiltered velocity pulsationsand filtered pulsationsfor f > 5 [tz are shown in Figures

6a and 6b. Filtered pulsations are ahnost equal to their value in tile free stream. So

tile increase of unfiltered pulsation level at sides of wake is caused by low frequency

oscillations and may be treated as quasi-steady displacement of wake in z-direction. The

data obtained permit us to conclude that the wake behind 0.1 mm wire is do laminar.

To produce tile turbulent wake the wire of 1.6 mm diameter was placed in flow with

velocity 10 m/s. The Reynolds number corresponding to flow over wire was 1E0 = 1100,

which is large enough for developed turbulent wake production. The profiles of mean

velocity and pulsations measured at distance x/D =220 are shown in Figure 7. 1)ue

to pulsation level is high enough, the filtered pulsations for f > 5 Itz highly differs

from unfiltered pulsations. The shape of pulsations profile with two maxima found here

is familiar for small deficit turbulent wake. From the shape of mean velocity profile the

velocity deficit u0 = 0.0633 uoo and half-thickness of the wake L = 4.0D were found. These

values found from universal laws [5] with constants from the experiment [6] u0 = 0.06d7 Uoo

, L = 3.88D are in good agreement with data of our measurements.

Tile spectra of velocity pulsations measured at the centerline of the wake and at the

boundary of it (z/L = 2.5) are presented in Figures 8a and 8b. 3'he irregular behavior

of the spectrum at the boundary of the wake for f < 100 tIz is caused by the relatively

high low-frequency pulsations in the wind-tunnel flow. In the same graphics the points

showing the generalization of the spectra measured in the flat-plate wake [6] are plotted.

In the centerline the agreement of our data and [6] is excellent. Rather poor agreement

of spectrum at tile boundary of the wake with [6] may be caused by different distance

from tile wake center in our and [6] measurements (in [6] the spectrum at the boundary

was measured for z/L = 3 ). Generally, the data presented here shows that the turbulent

wake in our wind tunnel has tile same parameters as the turbulent wake in tile good
low-turbulent wind tunnels.

2.4. Interaction of wake with fiat-plate boundary layer

In this section preliminary results on wake-boundary layer interaction are reported. All

mean-tlow profiles presented in this section were measured by one probe, so the accuracy

of these measurements is about 1% of outer flow velocity. In future the accuracy of

mean-flow measurements may be enhanced by means of two-probe method adaptation to

boundary-layer flow conditions.

Flow configuration and coordinate system used in this section are shown in Figure 3b.

The wake produced by vertically stretched wire interacts with boundary layer over the

horizontally mounted plate. For preliminary studies reported here tile plate with semi-

elliptical nose with 18:1 axis ratio was used. In subsequent more detailed investigation

the plat(', with expendable noses with different axis ratios (8:1, 4:1 etc.) will be used.

Plate was mounted at zero angle of attack so zero pressure gradient at the upper plate

surface occurs. The static pressure nonuniformity along the plate surface was less then

1%. Due to sufficiently large low-frequency pulsations in the wind tunnel, special efforts

were made to ensure that there are no local (in time) flow separations from leading edge.

At first effect of laminar wake behind 0.1 mm wire at 5 m/s speed on boundary layer

was studied. The distortion of mean flow in boundary layer at x = 200 mm from leading

edge was found to be within the experimental error, even for minimal distance from wire



to leadingedgea;0= 40 mm. No distinct maximum in velocity pulsation's distribution
over the spanwas found yet. So,the influenceof laminar wakeoll boundary-layer flow is
weakenough,instead of sufficiently largevelocity deficit of tile wakeUo/Uoo _ 6% when

it meets the leading edge of the plate. Possible explanations of this phenonmnon see ill
Section "Discussion".

All positive results obtained here deals with turbulent wake action on boundary layer

transition. These measurements were done at velocity 10 m/s. All diameters and positions

of wire used and characteristics of wakes generated at the plate's nose location are listed

in Table 2. Streamwise dependencies of mean flow velocity and pulsations (f > 5 llz)

in boundary layer exactly behind the wire (z = 0) for all these configurations are shown

in Figure 9. These data correspond to fixed 9 = 0.5 ram. Figure 9 demonstrates that

turbulent wake strongly affects on transition. If no wire is installed, the transition does

not occur up to the end of plate. By means of choosing the wake parameters the place of

transition may be moved from the near nose to the end of plate.

Amplification curves of pulsations measured for wake-boundary layer interaction are

similar to these for boundary layer transition in flow with enhanced turbulence level [7]. At

least for sufticiently weak wakes (I and II in Table 2), two stages of transition process may

be distinguished. At the first stage the pulsations in boundary layer are nearly constant

and seems be proportional to pulsations in the wake. The second stage is characterized

by fast growth of pulsations.

More detailed study of flow field was done in the configuration III from Table 2. In

sections z = 200, 350, 525, 670, 850 mm the profiles of mean velocity and filtered

pulsations (f > 5 llz) were measured in the boundary layer and at the outer edge of

it. These profiles are shown in Figure 10. Profiles in boundary layer were measured at

different distances from the wall, which are found from condition u = 0.5uoo. Outer flow

profiles correspond to fixed y = 7 ram.

Figure 10 clearly demonstrate that both mean flow distortion and pulsations amplify

in boundary layer. The character of this amplification is qualitatively ditferent before

and after growth of disturbances. In sections x = 200 mm and z = 350 rnm before

the growth the shape of pulsations profile in boundary layer is similar to that in outer

flow. The shape of streamwise distribution of mean velocity sufficiently differs from these

distribution in the outer flow, but the width of disturbed domain in boundary layer is the

same that in the outer flow. After rapid growth of disturbances (sections x = 670 mrn and

z = 850 ram) the pulsations and the mean flow distortion in the boundary layer spreads

in spanwise direction. Shape of pulsation profile here sufficiently differs from distributions
of pulsations in the outer flow.

Vertical profiles of mean velocity and filtered pulsations in the centre of tile wake at

the same sections are shown at the Figures lla and llb. In two first sections z = 200 mm

and z = 350 mm the mean velocity profiles are close to that in Blasius boundary layer

plotted by thick solid line in Figure lla. Profiles in two last sections (z = 670 mm and

z = 850 mm) are close to each other and are similar to turbulent boundary layer profile.

Shapes of pulsations profiles measured here are similar to analogues profiles obtained in

experiments on transition in flow with enhanced turbulence level [7].

In addition to mean-flow velocity and pulsation distributions, spectra of velocity
pulsations in the boundary layer and in the outer flow were measured at the same a;-

sections. These spectra u/(f) measured at the centerline (z = 0) and normalized such



that fo ufdf = 1 and fo ufdf = u' are shown in Figure 12a and 12b. Normalization used

in Figure 12a is convenient for study of evolution of spectrum shape whereas Figure t2b

shows the relative amplitudes of pulsations of different frequencies. At the initial stage

of transition the low-frequency pulsations predominantly grow. The most amplitude of

these disturbances is reached just before the maximum of u' at a: = 525 mm (see Figure

12b). At the later stage of transition at z = 670 mm and x = 850 mm the back energy

flux from low to high frequencies occurs. Such evolution of spectruln is familiar for the

transition in high turbulence level outer flow [7]. Tile spectra measured in the botmdary

of the wake within the boundary layer were almost the same as those at tile centcrline.

In spite of many attempts made, no phenomena which may be treated as TS waves

were observed. So the mechanism of this transition should be assigned to by-pass one.

2.5. Discussion

The discrepancy between the above experimental results and predictions of Goldstain's

work [4] is obvious. The results of [4] are based on "rapid distortion" theory [8] neglect-

ing the viscous terms outside the boundary layer. This theory is valid if the length on

which outer flow non-uniformity is deformed by flow inhomogeneity generated by nose is

small with respect to characteristic length of viscous deformation. The last length L, is

connected with the spanwise size of distortion L by

where for turbulent wake u should be substituted by turbulent viscosity coctlicient aT..

It's easy to see that for distortion generated by wake, L_ is approximately equals to the

distance from the wire to leading edge a:0. So the "rapid distortion" theory is valid if

the length of deformation z << x0. This condition was never fulfilled in our experiment,

especially when laminar wake-boundary layer interaction was studied. In this case, on

the contrary, x >> x0, and viscous forces are dominant. This is the reason of small impact

of laminar wake on boundary-layer flow. For turbulent wake-boundary layer interaction

x __ a:0, so the amplification of vortical disturbances by the flow deformation over the nose

was partially damped by viscous forces.

Thus, to increase the wake action on boundary layer, tile flow deformation produced

by leading edge should be enhanced. This may be achieved by means of choosing more
blunt leading edge.

When turbulent wake acts on boundary layer, the laminar-turbulent transition is

caused by two factors: the turbulent pulsations in the wake and mean flow distortion.

Unfortunately, the data obtained give no way for determining the relative roles of these

factors. It is difficult to do in principle, because of pulsations in turbulent wake are

proportional to velocity deficit. To distinguish the effect of mean flow distortion the ex-

periment on wake-boundary layer interaction in the outer flow with enhanced turbulence

lew+'l should be made. The radical way to separate the role of mean-flow distortion is to

obtain the effect of laminar wake on transition. This effect may be enhanced using model
with more blunt nose.



3. Interaction of Tollmien-Schlichting wave with steady flow in-

homogeneity

In this section the Tollmien-Schlichting wave development in tile boundary layer llow

with spanwise variations of velocity profile is investigated. It's well known that such

quasi-steady velocity variations generated by outer flow vortical disturbances ])lay signif-

icant role in transition process. For this reason the influence of steady inhomogeneity of

flow oil boundary layer stability is an actual problem studied in large amount of works.

Most of them [9, 10] are made in the frame of different asymptotic schemes valid for

R --+ oo and small amplitude of disturbances. So the results of [9, 10] are not suital)le

for real experimental conditions where Reynolds number is finite and amplitude of [low

inhomogeneity is sufficiently large.

In this section the Tollmien-Schlichting wave and steady disturbances interaction is

studied for finite R and amplitude of disturbances. Tire study is based on calculation of

spatial evolution of disturbances by parabolic stability equations (PSE) method.

3.1. Numerical method

Consider the flow of incompressible viscous fluid over an infinite fiat plate. Let be x -th(',

streamwise direction, y -the direction normal to wall and z -the spanwise direction. The

lengths and velocities are written in non dimensional form using tire upstream velocity

uoo and a constant length 5 = (U2o/Uoo) _ (boundary layer thickness at the dimensional

distance 20 from leading edge). The velocity vector V is decomposed into the two-

dimensional basic flow V0 corresponding to Blasius boundary layer and finite- amplitude

three-dimensional disturbance Vp as

v (x, y,z, t)= v0 (x,y)+ vp (x,y,

A disturbance is assumed to be periodic in t and z and is written as

N M

n=-N rn=0

Here the amplitudes Vm,_ and longitudinal wavenumber are assumed to be slowly

changing functions of x, such that terms like 02V,,_n/Ox _, 02_/Ox 2 can be neglected.

With these assumption, tire substitution of (3.1),(3.2) into Navier-Stokes equations, yields

a set of partial differential equations of parabolic type

L1 0Vm_ ^2 ^3 0_
0----_ + LmnVmn + Lmn-_xVmn = mmn(Vp) ('3._)

with boundary conditions

= = 0

and initial conditions in some section x = x0

Vmn(XO, y) = Frnn(Y) ol(22o) = o_ 0



_1 _2 _3
Here L_n,L._, Lm_ are linear operators including derivatives in y, N.._ represents

the nonlinear terms. Details of derivations of parabolic stability equations (3.3) and
expressions for _ l _2 _3L,,._, Lm,_, Lmn see in [11, 12].

The set of equations (3.3) was solved by a marching procedure in x. For approximation

of it in x the implicit finite difference scheme was used with iterations employed for non-

linear terms evaluations. The spectral collocation method was used for discretization of

(3.3) in y. In distinction to [11] no normalization conditions for amplitude functions V,,,_

was introduced, and a'(x) dependence was found from condition of minimal change of

arg(Vm,_) over each step.

To test the numerical method described here and code for it's realization we r(_peated

the calculations of non-linear evolution of two-dimensional TS wave made in [11]. The

initial conditions were set at R0 = 5uoo/v = 400, the reduced TS wave frequency was

F = wv/u_ = 8.6 x 10 .6 . Six Fourier components in (3.2) were used, with frequencies

OF, 1F, ..., 5F. Tile variation of U'm,_ with the Reynolds number obtained by our code

and in [11] are shown by solid and dashed lines in figure 13. The upper lines 1 and 2 are

tile amplitudes of TS wave for 0.25% and 0.3% initial amplitude level, the lower lines 1

and 2 are tile amplitudes of the second harmonics for the same initial amplitudes. Good

coincidence of our results and [11] demonstrates high accuracy of code developed.

Another test made was modeling of three-dimensional disturbances evolution in tile

experiment on subharmonic transition [13]. Figure 14 represents tile _mlplitude of primary

TS wave (solid line) and subharmonic (dashed line). Points shows experimental data of

[13]. The results of PSE-method are in good agreement with experiment.

3.2. Results

For study of interaction of TS wave with steady flow inhornogeneity, tile initial conditions

with non zero harmonics 10 and On, n = 1, ..., N were used. The harmonic 10 corresponds

to plane TS wave, the On harmonics describe the steady flow velocity variation in spanwise

direction. From our point of view, the most interesting is the flow inhomogeneity localized

in narrow stripe. Such steady flow distortion may be produced by the suction or blowing

of fluid throw the wall which is distributed in accordance with following expression

w(x,O,z) = c(1 -- q)exp (
(x-

Z _ ,] _ q,_-I cosn_z
n=l

where e is amplitude, x_ -center, A - characteristic length of suction or blowing distribu-

tion. If q = 1 - _, a << 1, then distribution of suction in spanwise direction has narrow

maximum at z = 0. For small amplitude of suction e tile steady flow distortion behind

the suction area may be found in the frame of parallel flow assulnption by receptivity

theory method developed in [14]. Such flow at large enough distance from suction domain

was used as an initial condition for harmonics 0n, n = 1,...,N. Specifically, the ttow

produced at initial section x = xo = R0 = 800 by suction or blowing distribution with

/? = 0.02, q = 0.95, x_ = 600, A = 20, N = 40 and different e was used as an initial

conditions for steady flow distortion. Tile maximum of steady velocity distortion in the

initial section AUo,, will be used further as a characteristic of steady flow inhomogeneity
instead of suction amplitude c.
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Steady flow inhomogeneity generated in initial section is shown in figure 15, with
figure 15a shows spanwise distribution of flow distortion at y = 2.64 (normalized by it's

maximum) and figure 15 b demonstrates tile velocity profiles for z = 0 and different Auo,,,.

The influence of different amplitude steady flow distortions on the development of

plane TS wave with co = 0.032 and amplitude u'm_x = 10 -a was studied. 'Ellis TS

wave was used as an initial condition for harmonic 10. The number of harmonics in

expression for velocity (3.2) was M = 4, N = 40. Evolution of TS wave in flow with

Au0,,, = +0.01, -1-0.1, +0.2, +0.3 was computed. Because of PSE-method does not works

at later stage of transition, the computations were stopped when the amplitude of velocity

pulsations reached 0.1 in any point of (y,z) plate. The streamwise coordinate x, where

this occurs is treated as an approximate place of laminar-turbulent transition, hi figure

16 the transition location z, as function of Au0m is shown, with solid and dashed lines

shows results for negative and positive Au0_.

The amplitudes of pulsations for fixed y = 2.64 as functions of Reynolds number for

negative and positive Au0,, are plotted in figures 17 a and b. Maximal over z ampli-

tudes are shown by dashed lines, whereas solid lines correspond to pulsations in "undis-

turbed" flow between the maximums of steady flow distortion (z = +rr/fl). Results for

Au0,, = +0.01, +0.1, -t-0.2, -t-0.3 are designated by figures 1,2, 3, 4, respectively. Compar-

ison of figures 17 a and b reveals qualitative different character of disturbances growth fl)r

steady flow inhomogeneities with positive and negative Au0,,_. For positive Au0_ maxinlal

pulsations slightly exceed tile pulsations in the "undisturbed" flow and steady inhomo

geneity highly affects on transition process. In contrast, for negative Auo_ the maximal

pulsations are in order of magnitude grater then the pulsations in the "undisturbed" flow.

The maximums of pulsations in this case are located within the regions of velocity deficit.

This may be explained by two causes. The first one is the inflexible instability of velocity

profile at tile region of velocity deficit. For Au0m < -0.1 the inflection point do exists in

the initial velocity profiles at z = 0 (see figure 15 b), but it disappears during evolution

of steady disturbances. Tile places where these points disappear are shown by arrows in

figure 17 a. Nevertheless, after the inflcction point dies out, the character of disturbances

evolution does not qualitatively changes. Consequently, another mechanism should be

responsible for pulsations growth in velocity deficit regions. This mechanism may be ex-

plained in the following manner. The phase velocity of TS wave in the velocity deficit

region is less then this in tile undisturbed flow. In accordance with the laws of geometri-

cal optics, the beams are concentrated in the regions of lesser phase velocity. Analogous

effect, seams to be the reason of pulsations growth in tile velocity deficit regions.

At later stages of transition pulsations reached large amplitude and triggered the

deformation of tile shape of steady flow distortion. This effect is illustrated by figure
18, where spanwise distribution of mean flow velocity and pulsations near transition are

shown. These data corresponds to initial maximum flow distortion Au0,n = -0. l. It

is interesting to note, that the shapes of mean velocity and pulsations distributions arc"

qualitatively sinlilar to those measured in experiment on wake-boundary layer interaction
(see figure 10).

It should be mentioned that TS wave - mean flow inhomogeneity interaction mod-

elled here not directly concerns the wake-boundary layer interaction studied in section

2. Nevertheless, instead of different nature of velocity pulsations some mechanisms of

disturbances evolution may be the same.



4. Passage of instability wave over strong surface irregularity

The suppression of instability waves in boundary-layer flow is of fundamental importance

in connection with the problem of laminar-turbulent transition delay. There exist two

main types of methods using to suppress TS waves. Tile first type includes various kinds

of distributed control for stabilization the mean flow. The compliant wall used to reduce

the growth rates of instability waves is the classical example of such a method [15] (Kramer,

1957). The second type of methods, first offered by Milling [16], applies the principle of

unstable wave cancellation by means of the formation of artificial instability wave with

tim same frequency and amplitude but opposite phase.

In this paper we investigate the suppression of unstable oscillations based on the inter-

action between TS wave and longitudinal irregularity caused by 2D compliant strip on a

rigid wall. Finite Reynolds number approach is used for theoretical and mmmrical analy-
sis. The results obtained admit equivalent physical interpretations within the framework

of methods of both the above-mentioned types: quantitative TS wave attenuation charac-

teristics can be obtained both by studying the stabilizing effect of the wall flexibility and

by analyzing the formation of the secondary TS wave generated by tile vibration of the

compliant part of the wall. This connection between stability and receptivity phenomena

have been pointed out in [17] for the problem of TS wave passage through a channel with

a local change of wall geometry.

Itere we also study the interaction between boundary-layer inhomogeneity and eigcn-

modes of other types (discrete or continuous). The quantitative characteristics of eigen-

mode modification - passage coefficient, transformation coefficient an(t transmutation co-

efficient - are introduced. The results of the investigation show the equivalence of stability

and receptivity phenomena in inhomogeneous boundary layer.

Note that the generation of artificial disturbances by a vibrator in boundary layer on a

wall with 2D elastic section has been investigated by Terent'ev [18] using tile assumptions

of triple-deck theory. The problem of TS wave propagation over tile join between a rigid

and compliant channel wall has been examined by Davies & Carpenter [19] using direct
numerical simulation.

4.1. Stability of boundary-layer flow on a wall of uniform flexibility

Let us consider a compressible boundary layer on a flat plate. We introduce a coordinate

system, with the origin at some point on the plate surface, with a streamwise x-axis,

and with a y-axis normal to the wall. The system of units is the same as in [14]. All

numerical examples are cited for Mach number M = 0.8, Prandtl number Pr = 0.75,

and specific heat ratio a = 1.4. In this paper we investigate the local structure of 21)

unsteady disturbances of boundary-layer flow eq(x,y)exp(-iwt) + c.c. + 0 (It[ 2) , q =

u, v, p, 0 .The mean flow is assumed to be homogeneous in x-direction in the region under
consideration.

To illustrate the influence of wall compliance on the stability of the boundary-layer
flow, we consider the simplest law of wall elasticity

y_, = -a cp(x,O)exp(-iwt) + c.c.

9



and supposethat tire flow is disturbed by spatially growingTS wave:

q0= q; (v)exp (m0*) (41)

Tile functions q_ and the complex wavenumber c_0 satisfy the eigenvalue problenl for

Lin-Lees system with the following wall conditions:

u
0

u o(0) =addy (O)po(O), v o(O)=zawpo(O), 00(0) =

In the case of a stiff wall (a = 0) for R = 1000, w = 0.05 we have C_o= 0.134 - i 0.002
t

so boundary layer is unstable. At cr = 10 tile flow becomes stable: c_o = 0.116 + i 0.00,I .

This type of TS wave suppression was proposed ill [15].

4.2. Cancellation of incoming TS wave by a vibrator

Another way of TS wave suppression was offered in [16]. The general idea of the metho(l

consists of the cancellation of the incoming TS wave with the aid of the artificial TS

wave generated by a 2D vibrating hump. This cancellation becomes possible because of

a special choice of the amplitude and phase of hump oscillations. Here we analytically

investigate this method of TS wave suppression.

Simulating the action of an artificial TS wave generator, we assume that a localized

part of the plate surface executes the harmonic oscillations in the y-direction with the

frequency equal to that of the incoming TS wave:

Y_, = s f (x)exp(-iwt) + c.c. (4.2)

The flow disturbance generated by the simultaneous influence of the incoming TS wave

(4.1) and the vibration (4.2) takes the following form:

q = q0 + q_

In order to solve the problem for q, (x, g), it is convenient to make Fourier decomposition:

q_=(27r)-'ff*q;(y)exp(ikx)dk, f*(k)= f f(x)exp(-ikx)dx

The normalized Fourier transform q_, satisfies the Lin-Lees system and the following wall
conditions:

dU

,4 (o) - du (o), ,,: (o) = o; (o) = o

The form of the artificial TS wave generated by the vibrator is determined by the rcsidue

contribution due to the pole of q_, at k = ao (the eigcnfunction is assumed to be nornialized

by the condition Po (0) = 1):

q,0 =f*(a0) Aqo(y)exp(ia0x) , A=res [zp,(0)]
k=_0

We want the incoming and artificial TS wave to cancel each other downstream the
vibrator. Let

f = 5F (x) , max II,'1; 1

10



where5 is a complex constant and F is a real function. The condition of mutual cancel-

lation of tile two TS waves

qo + qvo -= 0

will be satisfied if we assume that

1
6-

F* (ao) A

For the case of triangular vibrator F (z) = 1-1x/tl, Ixl -<I we have 161= 43.5, arg 6 =

1.95 (R = 1000, w = 0.05, l = 20).

4.3. Passage of instability wave over a wall of irregular flexibility

Our main object is to study the interaction between TS wave and inhonlogeneous flex-

ibility of the wall. Tile inconfing TS wave generates tile oscillations of tim compliant

section

y_ = -ofF(x) cp(x,O)exp(-icot) + c.c. (4.3)

where F (x) is longitudinal distribution of the wall flexibility. In contrast to the vibrator

problem, in this case the form of surface oscillations f (x) is unknown function to be

determined from the solution of the whole problem.

The connection between pressure disturbance and the vibration form can be obtained

from the solution of the vibrator problem [14]:

p(x,O) = exp (ia0x) + I[f] (4.4)

I [fl = (27r)-' f p; (0) dk f f (_)exp [ik (x - _)l d_

Using the equalities (4.2) -(4.4), we obtain the basic integral equation:

f = -aF {exp(iaox) + I[/]} (4.5)

We introduce a quantitative TS wave modification characteristic- the complex passage

coefficient Kp:

lip - qo + qvo _ 1 + f* (a0) A (4.6)
q0

- the ratio between the complex amplitudes of the passed and incoming TS wave.

At first, let us consider the limiting case o" _ 0. The equality (4.6) takes the form

Kp= i-oA f t"(x)dx +O(,72) (4.7)

This result is obtained from the considerations based on receptivity phenomenon. The

same result may be obtained from the investigation of TS wave propagation over the long

flexible section Isb (x) = 1, 0 _< x _< L , L >> 1. Over this section the disturbance can be

regarded as TS wave over the wall of small uniform flexibility (except the neighbourhoods

of the joins x = 0 and x = L). Based on stability phenomenon, these considerations give

the following equation for the passage coefficient:

exp (ia;L)

11



The equation(4.8) coincideswith (4.7) sincethe perturbation method leadsto the equality

, ()% = c_o + ia A + O cr2

Thus, the quantitative TS wave attenuation characteristics can be obtained both by

studying the stabilizing effect of the wall elasticity and by analyzing the format, ion of the

secondary TS wave generated by the wall vibration.

Now consider the general case cr = O (1). This investigation is based on the numerical

solution of the integral equation (4.5) .The results of calculations for the magnitude tKpl

of tim passage coefficient are shown in Figure 19. The calculations are made for flexibility

distribution

F(x)= 1,

2

2

a, 1)

Ixl < t

a

z Ixl z+ (4.9)

a

with 1 = 10, a = 4. The outlined results show a good agreement between linear theory

(4.7) and exact solution (4.6) up to a = 1. The value IZ",l has minimum in the vicinity

of cr = 10. At e = 20 this flexible section loses the capacity of TS wave suppressing.

The process of TS wave suppression by the compliant section (4.9) is shown in Figure

20 for R = 1000, co = 0.05, a = 10 and l = 100, a = 4. In the region over the compliant

section the disturbance is closely approximated by the relaxing TS wave over the wall of

uniform flexibility a = 10, with the complex amplitude at x = -I being not equal to that

of the incoming TS wave.

Consider the propagation of TS wave over a join between semi-infinite rigid and com-

pliant wall: F(z) --+ 0 as x --+ -oo and F(x) --+ 1 as z --+ +exp. We introduce the

complex transformation coefficient Ktf - the ratio between the complex amplitudes of the

incoming and passed TS wave. This value may be determined from the equation

1
Ktl --

f* (C_o) A

using the solution of the following problem:

(')f=-aFI[f] , f--+-aexp i%x as x---+ +oc

Contrary to the case of passage coefficient, the value of transformation coefficient

depends on the location of the coordinate origin.

4.4. Interaction of other eigenmodes with wall irregularity

Up to this point we have studied the scattering of TS wave into TS wave by wall in-

homogeneity. Scattering of TS wave into other discrete or continuous eigenmodes may

be investigated in a similar way: the amplitudes of generated eigenlnodes can be deter-

mined using Cauchy's integral theorem for calculation the integral I [f]. Moreover, TS

wave may be generated via scattering of other eigenmodes (discrete or continuous) by the

12



wall irregularity. This processis characterizedby the complextransmutation coellicient
h't,_(the ratio between complex amplitudes of incoming and scattered mode). This coef-

ficient may be determined from the solution of the equation (4.5) with a0 replaced by _

(the wavenumber of new eigenmode).

In Figure 21 tile process of transmutation of stable discrete eigenmode into TS wave is

shown for tile same parameters as in the above case. The wavenumber of incoming wave

elf I = 0.092 + i0.061. Figure 22 illustrates the scattering of sound propagating downstream

(the mode from continuous spectrum), into TS wave for tile same parameters and (_._ =
0.022 + i 2. 10 -r.

In our investigation we have demonstrated that the stability and receptivity phe-

nomenon in inhomogeneous flow have a common feature: the stability is the process of

scattering of TS wave into TS wave, while the receptivity describes the scattering of
continuous mode into TS wave.
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Table 1

U m/sec
--- |

10

Ur/U Ur/U

0.25%

0.25%

e

(f>5 hz)

0.06%

0.04%



Table 2

No

II

III

IV

Dlmm]

0.8

0.8

0.8

1.6

Xoimm]

455
tl

225

100

125

Uo/L_

0.045

0.059

0.076

0.084

L[mm]

6.2

4.8

3.7

6.7
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PULSATIONS IN LAMINAR WAKE
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Spectrum of pulsations in turbulent wake
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Wake - boundary layer interaction
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